Exported Content

OGC Web Services, Phase 3

1. OWS-3 Overview

Building on previous work in other OGC initiatives and technical working groups, OWS-3 participants worked collaboratively to extend the OGC baseline to enable an interoperable, multi-source decision support environment. The work addressed a rich set of requirements provided by OWS-3's sponsors. Sponsors include: BAE Systems, IONIC, GeoConnections (Canada), Lockheed Martin, MAGIC Services

OGC Web Services, Phase 6

OGC’s Interoperability Program is a global, hands-on and collaborative prototyping program designed to rapidly develop, test and deliver proven candidate specifications into OGC’s Specification Program, where they are formalized for public release. In OGC’s Interoperability Initiatives, an international team of technology providers’ work together to solve specific geo-processing interoperability problems posed by the initiative’s sponsoring organizations.

OGC Web Services, Phase 7

OWS testbeds are part of OGC's Interoperability Program, a global, hands-on and collaborative prototyping program designed to rapidly develop, test and deliver proven candidate specifications into OGC's Specification Program, where they are formalized for public release. In OGC's Interoperability Initiatives, international teams of technology providers work together to solve specific geoprocessing interoperability problems posed by the Initiative's sponsoring organizations.

OGC® IndoorGML

This OGC® IndoorGML standard specifies an open data model and XML schema for indoor spatial information. IndoorGML is an application schema of OGC® GML 3.2.1. While there are several 3D building modelling standards such as CityGML, KML, and IFC, which deal with interior space of buildings from geometric, cartographic, and semantic viewpoints, IndoorGML intentionally focuses on modelling indoor spaces for navigation purposes.

OGC® Open Modelling Interface (OpenMI) Interface Standard

The purpose of the Open Modelling Interface (OpenMI) is to enable the runtime exchange of data between process simulation models and also between models and other modelling tools such as databases and analytical and visualization applications. Its creation has been driven by the need to understand how processes interact and to predict the likely outcomes of those interactions under given conditions. A key design aim has been to bring about interoperability between independently developed modelling components, where those components may originate from any discipline or supplier. The ultimate...

Pages