Exported Content

Sensor Web Enablement DWG

Chair(s):

Botts, Mike (Botts Innovative Research)

Group Description:

Introduction

OGC members are specifying interoperability interfaces and metadata encodings that enable real time integration of heterogeneous sensor webs into the information infrastructure. Developers will use these specifications in creating applications, platforms, and products involving Web-connected devices such as flood gauges, air pollution monitors, stress gauges on bridges, mobile heart monitors, Webcams, and robots as well as space and airborne earth imaging devices.

OGC Web Services, Phase 3

1. OWS-3 Overview

Building on previous work in other OGC initiatives and technical working groups, OWS-3 participants worked collaboratively to extend the OGC baseline to enable an interoperable, multi-source decision support environment. The work addressed a rich set of requirements provided by OWS-3's sponsors. Sponsors include: BAE Systems, IONIC, GeoConnections (Canada), Lockheed Martin, MAGIC Services

Sensor Model Language (SensorML)

The primary focus of the Sensor Model Language (SensorML) is to provide a robust and semantically-tied means of defining processes and processing components associated with the measurement and post-measurement transformation of observations. This includes sensors and actuators as well as computational processes applied pre- and postmeasurement. The main objective is to enable interoperability, first at the syntactic level and later at the semantic level (by using ontologies and semantic mediation), so that sensors and processes can be better understood by machines, utilized automatically...

Hydrology DWG

Chair(s):

Zaslavsky, Ilya (University of California, San Diego Supercomputer Center)
Looser, Ulrich (Federal Institute of Hydrology (BfG))
Boston, Tony (Australian Bureau of Meteorology)
Pecora, Silvano (World Meteorological Organization (WMO))

Group Description:

The Hydrology Domain Working Group is a Joint Working Group of the World Meteorological Organisation (WMO) and the OGC

Climate-Hydrologic Information Sharing Pilot Sponsors

 
What is it?  An inter-disciplinary, inter-agency and international virtual observatory system for water resources information from observations and forecasts in the U.S. and Canada, building on current networks and capabilities, designed to support these functions:

  • Hydrologic modeling for historical and current stream flow and groundwater conditions.  Requires the integration of trans-boundary stream flow and groundwater well data, as well as national river networks (US NHD and Canada NHN) from multiple agencies.  Emphasis on time series data and real-time flood monitoring.
  • Modeling and assessment of nutrient load into the lakes.  Requires accessing water-quality data from multiple agencies and integrating with stream flow information for calculating loads.  Emphasis on discrete sampled water quality observations, linking those to specific NHD stream reaches and catchments, and additional metadata for sampled data. 
  • Collection and preservation of provenance, uncertainty measures, and other metadata throughout processing workflows.

Key objectives of these use cases are:

  1. To link observations data to the stream network, enabling queries of conditions upstream from a given location to return all relevant gages and well locations. This is currently not practical with the data sources available.
  2. To bridge differences in semantics across information models and processes used by the various data producers, to improve the hydrologic and water quality modeling capabilities.

 
Why do it now?  Improved capabilities for sharing, accessing, and integrating hydrologic and climatic data have been identified as a critical need for some time.  We are at a point in time at which an opportunity exists to make large steps forward by leveraging existing resources – including data portals, standards, technologies, activities, and expertise – to develop an initial operational capability for the system described above.  
 
Expected Benefits

  • Leverage a large body of existing data holdings and related activities of multiple agencies in the US and Canada.
  • Influence data and metadata standards used internationally for web-based information sharing, through multiple agency cooperation and OGC standards setting process.
  • Reduction of procurement risk through partnership-based development of an initial operating capability verses ~10x the cost for building a fully operational system using a traditional “waterfall approach”.
  • Identification and clarification of what is possible, and of the key technical and non-technical barriers to continued progress in sharing and integrating hydrologic and climatic information.
  • Promote understanding and strengthen ties within the hydro-climatic community. This is anticipated to be the first phase of a multi-phase project, with future work on forecasting the hydrologic consequences of extreme weather events, and enabling more sophisticated water quality modeling.

 
Plan

  • Release Request for Quotation / Call for Participation (RFQ/CFP)
  • Proposals due
  • Project Kickoff Meeting, Washington DC area
  • Completion of development and engineering reports

 
 

OGC® Open Modelling Interface (OpenMI) Interface Standard

The purpose of the Open Modelling Interface (OpenMI) is to enable the runtime exchange of data between process simulation models and also between models and other modelling tools such as databases and analytical and visualization applications. Its creation has been driven by the need to understand how processes interact and to predict the likely outcomes of those interactions under given conditions. A key design aim has been to bring about interoperability between independently developed modelling components, where those components may originate from any discipline or supplier. The ultimate...

Pages